Errant being.
373 stories
·
0 followers

At the Canadian Museum of Nature, rewilding is art

1 Share
At the Canadian Museum of Nature, rewilding is art

The first thing you’ll notice at the Canadian Museum of Nature’s new Rewilding exhibit is an almost impossibly vibrant floral display suspended from the ceiling. That’s Amanda McCavour’s work, and it’s hard to miss. More than 500 poppies take centre stage, delicately embroidered on dissolvable fabric. Though the flowers look fragile, each line of thread (and there are many) contributes to their strength. It might be the most perfect allegory for rewilding: Nature, like her poppies, is more resilient with each individual effort.

This stunning work is just one of 13 currently on display at the Ottawa, Ontario, museum – and you’ll eventually find your eyes equally drawn to the work of the other 12 participating artists, many of them winners of the David Suzuki Foundation’s inaugural Rewilding Arts Prize. Each makes you think: this is just the beginning of what we could collectively accomplish. 

Jode Roberts, manager of the Rewilding Communities program at the David Suzuki Foundation, thinks visitors might be surprised by just how much complexity there is to the exhibit. “People might not expect to find such a dynamic mix of ecological, cultural, and artistic perspectives under one roof,” he says. He feels the exhibit is an opportunity to reawaken people’s connection to nature.

That’s thanks to the artists, each of whom approached themes of nature and rewilding in their own way. But it’s with a collective energy that the exhibit came together. In this spirit, throughout the year, interactive components will be offered for museum visitors, starting with an opportunity to craft their own tapestry à la Angela Marsh. Marsh uses fragments of wild plants found in abandoned urban lots and weaves them through bubble-wrap with painstaking detail. Don’t worry: the DIY version offered to visitors won’t take as long to complete.

Artist Xecê Khadija Baker might be the most inspiring when it comes to taking action in your own neighbourhood. She explores what it means to belong and feel at home in her 22-minute live performance, Performing Community Garden. As a Syrian immigrant, Baker says that gardening is what brought her community, and she set out to share that with others in a thought-provoking way.

Why the Rewilding Movement Needs Art
Art has the power to make us think, fill our lives with colour and beauty and inspire us to make impactful choices for the future of our planet.
At the Canadian Museum of Nature, rewilding is art

Care is a recurring theme of the exhibit, as evidenced by the detailed nature sketches and colourful paintings contributed by Hashveenah Manoharan. They’re part of her “slow walk” series, which was very intentionally named with inspiration from the queen of nature poetry, Mary Oliver. Manoharan sees a slow walk as the simplest way we can all start to pay attention to and respect and care for nature. She uses the example of snakes, which (like many people) she used to fear. “I had no interest in overcoming [my] fear of snakes until I started working with and living among them,” she says. “They are emblematic of what attentiveness can do for our relationship to nature: once I started to seek them, I was able to appreciate them, and thus emboldened to work to protect them. This procedural advancement from attentiveness to respect to care is a powerful pipeline – one we all have the capacity to undertake, beginning with a slow walk.” 

Another thing many people fear – or at least avoid – is insects. But Cole Swanson wants us to learn to appreciate them. He meticulously collected 280 household insect specimens and gilded them with 24-carat gold leaf, in the process taking something that’s often dismissed or derided and showing just how worthy it is of our care and attention. 

The exhibit, which runs from October 11, 2024 to September 8, 2025, was even built sustainably. Museum staff used a modular wall system constructed from recycled materials, reused display cases and AV equipment from previous exhibitions, and did fabrication and metalwork onsite to reduce transportation emissions.

🌿
All the artists you’ll encounter have both visually stunning and wildly inspiring work to enjoy on your “slow walk” through the exhibit. Look for contributions from Laara Cerman, Janice Wright Cheney, Anna Binta Diallo, Kendra Fanconi, Sarah Peebles, Amber Sandy, Justin Tyler Tate, Xecê Khadija Baker, Hashveenah Manoharan, Amanda McCavour, Angela Marsh, Cole Swanson and Natasha Lavdovsky.

“This exhibition is an opportunity to deepen our understanding and inspire action for a sustainable future,” says Danika Goosney, President and CEO of the Canadian Museum of Nature. And that’s exactly what the museum tries to do as well. Their outdoor plaza is even home to a number of native species that offer a sustainable source of food for the live ants, beetles and walking sticks in the Bugs Alive Gallery.

For anyone looking to live more sustainably and begin their own rewilding journey, perhaps the best place to begin is with a little inspiration from the exhibit. After all, encouraging people to become involved in rewilding in a hands-on way is exactly what its creators hope to accomplish. Rewilding doesn’t happen in a vacuum – care and community are at its core. “By witnessing these artistic expressions of rewilding, my hope is that people will leave feeling empowered to take action,” says Roberts – “whether that’s through planting native wildflowers, participating in community gardens or simply rethinking how they engage with spaces in their neighbourhoods.”


At the Canadian Museum of Nature, rewilding is art

This article is part of a series on rewilding and the arts as part of the David Suzuki Foundation's inaugural Rewilding Arts Prize. Read more about the prize and the winners here:

The Rewilding Arts Prize Showed Us There’s Always More to See – and Share
The movement for a wilder world needs everyone on board. These artists and Rewilding Arts Prize winners are among those leading the way.
At the Canadian Museum of Nature, rewilding is art
Read the whole story
jchalifour
14 days ago
reply
Montréal
Share this story
Delete

Why your brain could be the next frontier of data privacy

1 Share
A mustachioed man smiles and looks up while wearing a skullcap covered in wires attached to electrodes

As tech companies and scientists invest in technology that interacts with our brains, some experts say we’re far from being able to map moods and thoughts in a meaningful way. Others, however, say brain data is the next frontier of privacy, and we need to pass laws to protect our brain data now.

Read the whole story
jchalifour
57 days ago
reply
Montréal
Share this story
Delete

Montreal-area school blends Indigenous culture and environmental restoration in new green space

1 Share
plants

John Abbott College, located in Sainte-Anne-de-Bellevue, Que., is calling the space Kahnikonri:io - Good Mind Garden and Microforest.

Read the whole story
jchalifour
77 days ago
reply
Montréal
Share this story
Delete

New multispectral analysis of Voynich manuscript reveals hidden details

1 Share
side by side images of a folio from the voynich manuscript with its multispectral counterpart on the right

Enlarge / Medieval scholar Lisa Fagin Davis examined multispectral images of 10 pages from the Voynich manuscript. (credit: Lisa Fagin Davis)

About 10 years ago, several folios of the mysterious Voynich manuscript were scanned using multispectral imaging. Lisa Fagin Davis, executive director of the Medieval Academy of America, has analyzed those scans and just posted the results, along with a downloadable set of images, to her blog, Manuscript Road Trip. Among the chief findings: Three columns of lettering have been added to the opening folio that could be an early attempt to decode the script. And while questions have long swirled about whether the manuscript is authentic or a clever forgery, Fagin Davis concluded that it's unlikely to be a forgery and is a genuine medieval document.

As we've previously reported, the Voynich manuscript is a 15th century medieval handwritten text dated between 1404 and 1438, purchased in 1912 by a Polish book dealer and antiquarian named Wilfrid Voynich (hence its moniker). Along with the strange handwriting in an unknown language or code, the book is heavily illustrated with bizarre pictures of alien plants, naked women, strange objects, and zodiac symbols. It's currently kept at Yale University's Beinecke Library of rare books and manuscripts. Possible authors include Roger Bacon, Elizabethan astrologer/alchemist John Dee, or even Voynich himself, possibly as a hoax.

There are so many competing theories about what the Voynich manuscript is—most likely a compendium of herbal remedies and astrological readings, based on the bits reliably decoded thus far—and so many claims to have deciphered the text, that it's practically its own subfield of medieval studies. Both professional and amateur cryptographers (including codebreakers in both World Wars) have pored over the text, hoping to crack the puzzle.

Read 12 remaining paragraphs | Comments

Read the whole story
jchalifour
88 days ago
reply
Montréal
Share this story
Delete

Carol Off wants to take the word 'freedom' back from the far right

1 Share
A woman with shoulder-length brown hair stands in front of a wall of postcards and smiles toward the camera.

When Carol Off started writing a book calling on people to reclaim the word “freedom” from the far right, she thought she would be dismissed as naive. Then Kamala Harris began her run to become U.S. president.

Read the whole story
jchalifour
95 days ago
reply
Montréal
Share this story
Delete

Unraveling ‘Oumuamua’s Anomalous Acceleration: Could This Interstellar Object Have Been Manufactured?

1 Share

The observable Universe around us takes the form of a bounded sphere. Its boundary is defined by the distance traveled by light since the Big Bang. Now, suppose there was a massive object far outside our cosmic horizon that accelerated gravitationally this entire sphere, including us. Would we notice this uniform acceleration?

The answer is: no. The cosmic sphere is no different from the free-falling elevator in Albert Einstein’s thought experiment. If we happen to be free-falling with the elevator in a uniform gravitational field, the sealed elevator cabin and our bodies would be moving together, and we would not sense gravity.

However, the situation changes if we attach a cable to the elevator. A passenger standing on the surface pulled by the cable would feel the sensation of being pulled away from that surface as if there is an opposing gravitational force relative to it. A passenger on the opposite side of the cabin would feel an attractive gravitational force pushing them against the elevator floor. This thought experiment has interesting implications for the dynamics of interstellar objects near the Sun.

The first interstellar object, `Oumuamua, was discovered in 2017 as it passed near Earth in its trajectory around the Sun. The trajectory exhibited an anomalous non-gravitational acceleration away from the Sun with no sign of cometary evaporation. When `Oumuamua passed near Earth, the magnitude of the anomalous acceleration as it moved away was of an order of five micrometers per second squared. A micrometer (micron) is a millionth of a meter (or a thousandth of a millimeter).

`Oumuamua was also tumbling with a rotation period of 8 hours. Based on the light curve from its reflection of sunlight, `Oumuamua was inferred to possess the shape of a flat disk (pancake) with a radius of order 100 meters, assuming an albedo of 10%. This size was a thousand times too small for our best telescopes to resolve its image.  `Oumuamua’s rotation and size imply a centrifugal acceleration of order five micrometers per second squared at its outer edge, which is surprisingly similar in magnitude to its anomalous acceleration away from the Sun.

Finally, assuming a solid density of order a gram per cubic centimeter, the internal gravitational acceleration from a spherical object of size 100 meters is five micrometers per second squared, once again surprisingly similar in magnitude to the centrifugal and non-gravitational accelerations. Does this coincidence in magnitude among these three accelerations provide an important clue about the composition or shape of `Oumuamua?

If `Oumuamua was made of independent components held together by gravity, then the rotation of `Oumuamua’s disk could have been balanced by its self-gravity, explaining the similar magnitude of the gravitational and centrifugal accelerations. But this would require a substantial mass fraction in a “bulge” configuration. As inferred from `Oumuamua’s light curve, a thin disk geometry carries much less mass than a sphere.

Given the lack of cometary evaporation and the favored disk geometry, the non-gravitational acceleration could have been produced by radiation pressure from sunlight on the disk, as suggested in the paper I wrote in 2018 with my former postdoc, Shmuel Bialy.  In that case, the measured non-gravitational acceleration requires a large surface area to mass ratio for `Oumuamua, translating to a thickness of an order of one millimeter at solid density. This thickness is one part in 100,000 of the estimated radius of `Oumuamua.

This raises the possibility that `Oumuamua’s disk was actually a thin solid layer that was manufactured technologically, since we are not aware of an astrophysical process that would produce an umbrella-shaped structure of these extreme dimensions. If artificial in origin, `Oumuamua could have been either a light sail, or a tough surface layer that was torn apart from a spacecraft. Another possibility is that it could have been a broken piece of a Dyson sphere, an idea I put forward in a recent paper.

But why would the non-gravitational acceleration of the object be related to its centrifugal acceleration? If the thin disk is held together by gravity from a core that is not affected as much by radiation pressure because of its smaller surface area per unit mass, then the non-gravitational acceleration would be adding positive “gravity” towards the core on one side of the disk, and adding negative “gravity” away from the core on the opposite side. An good analogy for this would be a cable acting on an elevator cabin.  In the case of ‘Oumuamua, a thin gaseous disk would have been torn apart if the non-gravitational acceleration was more significant than the internal gravitational acceleration that binds it.

For this reasoning to apply, `Oumuamua should have contained a thin debris disk around a central object, resembling a miniature of Saturn’s rings. Remarkably, the ratio of scale height (~1 kilometer) to radius (~100,000 kilometers) in Saturn’s rings is also one part in 100,000. From this, a question arises: did `Oumuamua’s shape resemble the planet Saturn?

Probably not. A gaseous disk could not have remained so thin near the Sun. At perihelion, `Oumuamua was four times closer to the Sun than Earth, so its surface temperature reached about 600 degrees Kelvin. At this high temperature, the random motion of atoms would have exceeded the gravitational escape velocity from `Oumuamua by a factor of 100,000. To keep atoms from evaporating requires the chemical bonding of a solid. Self-gravity would not have been able to maintain a thin disk.

It is often said that “what goes up must come down,” but this assumes strong gravity, whereas a gaseous gas disk around Oumuamua could not have maintained its integrity by self-gravity and would have evaporated near the Sun. This could have been avoided if Oumuamua had been a solid, thin disk, and one that had been manufactured.

Ecclesiastes 1:9 states: “there is nothing new under the Sun.”  `Oumuamua may have provided an exception to this rule.

Avi Loeb is the head of the Galileo Project, founding director of Harvard University’s – Black Hole Initiative, director of the Institute for Theory and Computation at the Harvard-Smithsonian Center for Astrophysics, and the former chair of the astronomy department at Harvard University (2011-2020). He is a former member of the President’s Council of Advisors on Science and Technology and a former chair of the Board on Physics and Astronomy of the National Academies. He is the bestselling author of “Extraterrestrial: The First Sign of Intelligent Life Beyond Earth” and a co-author of the textbook “Life in the Cosmos”, both published in 2021. His new book, titled “Interstellar”, was published in August 2023.

Read the whole story
jchalifour
113 days ago
reply
Montréal
Share this story
Delete
Next Page of Stories